Digital Logic Design Lab Lab Manual 8
Date: Roll Number

Experiment 8

Introduction to Verilog HDL Programming for Gate-Level Description and
Dataflow Modeling of Combinational Logic

Objective

e By the end of this lab, students will be able to:

e Understand Gate-Level Modeling

Use Verilog Primitives Effectively

Model Combinational Circuits Using Assign Statements
Develop and Simulate Combinational Circuits

Analyze and Interpret Simulation Results

Introduction to Verilog HDL

Verilog HDL (Hardware Description Language) is a widely used language for designing and
modeling digital electronic systems. It allows engineers and students to describe the behavior and
structure of digital circuits at various levels of abstraction, including gate-level, dataflow, and
behavioral modeling. Using Verilog, complex combinational and sequential circuits can be
efficiently implemented, simulated, and verified before actual hardware realization.

In this lab, students will focus on gate-level and dataflow modeling of combinational circuits using
Verilog. They will explore Verilog primitives, continuous assign statements, and understand how
logic gates such as AND, OR, NOT, NAND, NOR, XOR, and XNOR can be represented in code.
This hands-on approach reinforces the connection between circuit theory and digital design using
HDL.

The lab exercises are performed using Vivado Design Suite, a professional FPGA design software
developed by Xilinx. Vivado provides an integrated environment for writing, simulating, and
synthesizing Verilog modules. It allows the creation of modular designs, where each module
represents a functional block of the circuit, making complex designs easier to manage and test.

By the end of this lab, students will be able to write Verilog modules for basic combinational
circuits, simulate their functionality in Vivado, and understand the use of modules, ports, and
operators to describe digital systems effectively.

Digital Logic Design Lab Lab Manual 8
Date: Roll Number

Module Declaration

The language reference manual for the Verilog HDL presents a syntax that describes precisely the
constructs that can be used in the language. In particular, a Verilog model is composed of text
using keywords, of which there are about 100. Keywords are predefined lowercase identifiers that
define the language constructs. Examples of keywords are module, endmodule, input, output,
wire, and, or, and not. For clarity, keywords will be displayed in boldface in the text in all
examples of code and wherever it is appropriate to call attention to their use. Any text between
two forward slashes (/) and the end of the line is interpreted as a comment and will have no effect
on a simulation using the model. Multiline comments begin with / * and terminate with * /. Blank
spaces are ignored, but they may not appear within the text of a keyword, a user-specified
identifier, an operator, or the representation of a number. Verilog is case sensitive, which means
that uppercase and lowercase letters are distinguishable (e.g., not is not the same as NOT).
The term module refers to the text enclosed by the keyword pair module . . . endmodule. A module
is the fundamental descriptive unit in the Verilog language. It is declared by the keyword module

and must always be terminated by the keyword endmodule.

Table 1:Logic Gates and Their Verilog Equivalent Symbols

Gate Type Logic Function Verilog Primitive Example Usage
(Symbol)

AND Gate Output is 1 only if all inputs are 1 and and G1 (Y, A, B);

OR Gate Output is 1 if any input is 1 or or G2 (Y, A, B);

NOT Gate Output is the complement of input not not G3 (Y, A);

(Inverter)

NAND Gate Complement of AND output nand nand G4 (Y, A,

B);

NOR Gate Complement of OR output nor nor G5 (Y, A, B);

XOR Gate Output is 1 if inputs are different xor xor G6 (Y, A, B);

XNOR Gate Output is 1 if inputs are same xnor xnor G7 (Y, A, B);

BUFFER Output follows the input (used for driving | buf buf G8 (Y, A);
signals)

Tri-State Buffer Enables/disables output based on control bufifl / bufif0 bufifl G9 (Y, A,
signal EN);

Boolean Expressions

Boolean equations describing combinational logic are specified in Verilog with a continuous
assignment statement consisting of the keyword assign followed by a Boolean expression. To
distinguish arithmetic operators from logical operators, Verilog uses the symbols (&), (/), and (&)

Lab Manual 8
Roll Number

Digital Logic Design Lab
Date:

for AND, OR, and NOT (complement), respectively. Verilog HDL operators list is given in the
Table 2.

Table 2Verilog HDL Operators

Operator Type Operator Symbol | Description / Usage Example

Arithmetic Operators + Addition Y =A+B;

- Subtraction Y =A-B;

* Multiplication Y =A*B;

/ Division Y =A/B;

% Modulus (remainder) | Y = A % B;
Relational Operators == Equal to Y = (A==B);

1= Not equal to Y = (A !'=B);

< Less than Y = (A<B);

> Greater than Y =(A>B);

<= Less than or equal Y = (A<=B);

>= Greater than or equal | Y = (A >=B);
Logical Operators && Logical AND Y = A &&B;

! Logical NOT Y = 1A;
Bitwise Operators & Bitwise AND Y=A&B;

)) Bitwise OR

n Bitwise XOR Y =A"B;

~ Bitwise NOT Y = ~A;

~N [A~ Bitwise XNOR Y =A-~"B;
Reduction Operators &A AND of all bits Y = &A;

) A OR of all bits

A XOR of all bits Y = 1A

~&A NAND of all bits Y = ~&A,;

T~ A NOR of all bits

~NA [N~A XNOR of all bits Y = ~MA;
Shift Operators << Left shift Y=A<<2;

>> Right shift Y=A>>2;

<<< Arithmetic left shift | Y = A <<<2;

>>> Arithmetic right shift | Y = A>>>2;

Concatenate bits Y = {AB};

Concatenation / Replication | {}
?:

Conditional / Ternary If-else expression Y=(A>B)?A:B;

Note: please visit the following link for understanding how to create your first program
Xilinx Vivado

https://www.youtube.com/watch?v=sA5YEIFzCOw&1t=823s

n

https://www.youtube.com/watch?v=sA5YEIFzCOw&t=823s

Digital Logic Design Lab Lab Manual 8
Date: Roll Number

Consider the following circuit diagram.

The Verilog code for circuit is:
module Simple_Circuit (A, B, C, D, E);

output D, E;

input A, B, C;

wire wil;

and G1 (w1, A, B); // Optional gate instance name
not G2 (E, C);

or G3 (D, wl, E);

endmodule

Task 1:
Run the above code and show the test bench waveforms for it. [2]

Task 2:

Now, consider the Boolean expression given below. Write down the Verilog module for it. [2]
E=A+BC+BD
F=B’C+BC’D’

The equations specify how the logic values E and F are determined by the values of A, B, C, and

D.

/IVerilog model: Circuit with Boolean expressions

module Circuit_Boolean_CA (E, F, A, B, C, D);

output E, F;

input A, B, C, D;

assign E=A|| (B && C) || ('B) && D);

assign F =((1B) && C) || (B && (!C) && (ID));

endmodule

Run the above code and show the test bench waveforms for it.

Digital Logic Design Lab Lab Manual 8
Date: Roll Number

Lab Exercise (20 Marks)

Find the syntax errors in the following declarations (note that names for primitive gates are
optional): [2]

module Exmpl-3(A, B, C, D, F) // Line 1

inputs A, B, C, Output D, F, // Line 2

output B // Line 3

and g1(A, B, D); // Line 4

not (D, A, C), // Line 5

OR (F, B; C); // Line 6

endmodule; // Line 7

Draw the logic diagram of the digital circuit specified by the following Verilog description: [3]
(a) module Circuit A (A, B, C, D, F);
input A, B, C, D;

output F;

wirew, x, Y, z, a, d;

or (x, B, C, d);

and (y, a,C);

and (w, z ,B);

and (z,y, A);

or (F, X, w);

not (a, A);

not (d, D);

endmodule

Digital Logic Design Lab Lab Manual 8
Date: Roll Number

Write a Verilog code for gate-level description using primitives of the circuit shown in figures
below. Determine the Boolean Function Equation and then write code using assign statement.

Also show test bench waveforms for it. [5+5]
Dﬁ;[} :

—

[)
|

>SS oY

@)

Digital Logic Design Lab Lab Manual 8
Date: Roll Number

U

Digital Logic Design Lab Lab Manual 8
Date: Roll Number

Using continuous assignments, write a Verilog description of the circuit specified by the following
Boolean functions. Test the outputs using test bench waveforms. [5]

Out 1= (A + B')C'(C + D)
Out2 = (C'D + BCD + CD')(A' + B)
Out 3 = (AB + C)D + B'C

