Digital	Logic Design	Lak
Date:		
Total	Marks: 20	

Lab Manual 13	
Roll Number	

Lab No. 13

Behavioral Modeling of Sequential Circuits in Verilog

Objective:

In this lab students will learn how to implement

- To understand the concept of **behavioral modeling** using always blocks in Verilog.
- To learn how to design and simulate **D-Latch**, **D Flip-Flop**, **JK Flip-Flop**, and **T Flip-Flop** using behavioral style.
- To analyze the difference between **latches and flip-flops** and their timing behavior.
- To understand edge-sensitive and level-sensitive triggering in sequential circuits.
- To verify the functional behavior of sequential circuits through waveform simulations.

Theory

Behavioral modeling in Verilog describes a circuit in terms of **how it behaves**, rather than how it is physically connected. Instead of gate-level connections, behavioral modeling uses **procedural statements**, mainly inside always blocks, to define the logical operation of sequential circuits. This makes the code simpler, readable, and closer to high-level algorithms.

Sequential circuits such as latches and flip-flops store information and change states based on a control signal (Enable or Clock).

- A **D-Latch** is **level-sensitive**, meaning the output follows the input D only when Enable = 1.
- **Flip-flops** are **edge-triggered** devices. They change state only on the positive or negative edge of the clock signal.
- A **D Flip-Flop** transfers the value of D to Q on the active clock edge.
- A **JK Flip-Flop** allows toggle, reset, and set operations depending on the values of J and K.
- A **T Flip-Flop** toggles its state when T = 1 and holds its state when T = 0.

Using behavioral modeling, these storage elements are described with constructs like if, case, posedge, negedge, and non-blocking assignments (<=). This approach closely follows the truth tables and timing diagrams of the sequential devices, making it ideal for both learning and digital design implementation.

Digital Logic Design Lab Date:
Total Marks: 20 Cotting Started with an Example
Getting Started with an Example
Run the following code and observe its output
module DLatch(input Enable, D,output Q); reg Q; always @ (Enable or D) if (Enable) Q <= D; endmodule
<u>Testbench Code</u> timescale 1ns/1ps
module D_Test;
// Inputs reg Enable, D;
// Output wire Q;
// Instantiate the Unit Under Test (UUT) DLatch uut (.Enable(Enable), .D(D), .Q(Q));
initial begin \$monitor("Time=%0t Enable=%b D=%b Q=%b", \$time, Enable, D, Q);
// Initial values Enable = 0; D = 0; #10;
// Test 1: Latch disabled (Q should not change) D = 1; #10; D = 0; #10;
// Test 2: Latch enabled (Q follows D) Enable = 1; D = 1; #10; D = 0; #10;
// Test 3: Disable again (Q should hold last value) Enable = 0; D = 1; #10; D = 0; #10;
\$finish; end
endmodule

Lab Manual 13

Roll Number_____

Lab Exercise

Digital Logic Design Lab	Lab Manual 13
Date: Total Marks: 20	Roll Number
Total Marks. 20	
Write down behavioral level description	n of D Flip Flop in Verilog and generate its Testbench
for verifying its operation. [5]	
Now, using the same D_FF module, po	erform the conversion of D into JK Flip Flop using
instantiation. [5]	

Digital Logic Design Lab Date:	Lab Manual 13 Roll Number
Total Marks: 20	Noti Nutribet
Similarly, using the same D_FF module,	, perform the conversion of D into T Flip Flop using
instantiation. [5]	
What is the role of always statement in t	the behavioral modeling? [2]

Digital Logic Design Lab Date:	Lab Manual 13 Roll Number
Total Marks: 20	
Conclusion [3]	