Digital Logic Design Lab Lab Manual 13

Date:

Roll Number

Total Marks: 20

Lab No. 13

Behavioral Modeling of Sequential Circuits in Verilog

Objective:

In this lab students will learn how to implement

To understand the concept of behavioral modeling using aiways blocks in Verilog.
To learn how to design and simulate D-Latch, D Flip-Flop, JK Flip-Flop, and T Flip-
Flop using behavioral style.

To analyze the difference between latches and flip-flops and their timing behavior.

To understand edge-sensitive and level-sensitive triggering in sequential circuits.

To verify the functional behavior of sequential circuits through waveform simulations.

Theory

Behavioral modeling in Verilog describes a circuit in terms of how it behaves, rather than how it
is physically connected. Instead of gate-level connections, behavioral modeling uses procedural
statements, mainly inside always blocks, to define the logical operation of sequential circuits. This
makes the code simpler, readable, and closer to high-level algorithms.

Sequential circuits such as latches and flip-flops store information and change states based on a
control signal (Enable or Clock).

A D-Latch is level-sensitive, meaning the output follows the input D only when Enable =
1.

Flip-flops are edge-triggered devices. They change state only on the positive or negative
edge of the clock signal.

A D Flip-Flop transfers the value of D to Q on the active clock edge.

A JK Flip-Flop allows toggle, reset, and set operations depending on the values of J and
K.

A T Flip-Flop toggles its state when T = 1 and holds its state when T = 0.

Using behavioral modeling, these storage elements are described with constructs like if, case,
posedge, negedge, and non-blocking assignments (<=). This approach closely follows the truth
tables and timing diagrams of the sequential devices, making it ideal for both learning and digital
design implementation.

Digital Logic Design Lab Lab Manual 13
Date: Roll Number

Total Marks: 20
Getting Started with an Example

Run the following code and observe its output

module DLatch(input Enable, D,output Q);

reg Q;

always @ (Enable or D)
if (Enable) Q <= D;
endmodule

Testbench Code

timescale 1ns/1ps

module D_Test;

Il Inputs
reg Enable, D;

// Output
wire Q;

/I Instantiate the Unit Under Test (UUT)
DLatch uut (

.Enable(Enable),

Q)

’

initial begin
$monitor("Time=%0t Enable=%b D=%b | Q=%b",
$time, Enable, D, Q);

/I Initial values
Enable = 0; D = 0; #10;

// Test 1: Latch disabled (Q should not change)
D =1; #10;
D =0; #10;

/I Test 2: Latch enabled (Q follows D)

Enable =1; D = 1; #10;

D =0; #10;

/l Test 3: Disable again (Q should hold last value)
Enable =0; D = 1; #10;

D =0; #10;

$finish;
end

endmodule

Lab Exercise

Digital Logic Design Lab Lab Manual 13
Date: Roll Number

Total Marks: 20

Write down behavioral level description of D Flip Flop in Verilog and generate its Testbench
for verifying its operation. [5]

Now, using the same D_FF module, perform the conversion of D into JK Flip Flop using

instantiation. [5]

Digital Logic Design Lab Lab Manual 13
Date: Roll Number
Total Marks: 20

Similarly, using the same D_FF module, perform the conversion of D into T Flip Flop using

instantiation. [5]

What is the role of always statement in the behavioral modeling? [2]

Digital Logic Design Lab Lab Manual 13
Date: Roll Number

Total Marks: 20

Conclusion [3]

