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Lab No. 13

Behavioral Modeling of Sequential Circuits in Verilog

Objective:

In this lab students will learn how to implement

To understand the concept of behavioral modeling using aiways blocks in Verilog.
To learn how to design and simulate D-Latch, D Flip-Flop, JK Flip-Flop, and T Flip-
Flop using behavioral style.

To analyze the difference between latches and flip-flops and their timing behavior.

To understand edge-sensitive and level-sensitive triggering in sequential circuits.

To verify the functional behavior of sequential circuits through waveform simulations.

Theory

Behavioral modeling in Verilog describes a circuit in terms of how it behaves, rather than how it
is physically connected. Instead of gate-level connections, behavioral modeling uses procedural
statements, mainly inside always blocks, to define the logical operation of sequential circuits. This
makes the code simpler, readable, and closer to high-level algorithms.

Sequential circuits such as latches and flip-flops store information and change states based on a
control signal (Enable or Clock).

A D-Latch is level-sensitive, meaning the output follows the input D only when Enable =
1.

Flip-flops are edge-triggered devices. They change state only on the positive or negative
edge of the clock signal.

A D Flip-Flop transfers the value of D to Q on the active clock edge.

A JK Flip-Flop allows toggle, reset, and set operations depending on the values of J and
K.

A T Flip-Flop toggles its state when T = 1 and holds its state when T = 0.

Using behavioral modeling, these storage elements are described with constructs like if, case,
posedge, negedge, and non-blocking assignments (<=). This approach closely follows the truth
tables and timing diagrams of the sequential devices, making it ideal for both learning and digital
design implementation.
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Getting Started with an Example

Run the following code and observe its output

module DLatch(input Enable, D,output Q);

reg Q;

always @ (Enable or D)
if (Enable) Q <= D;
endmodule

Testbench Code

timescale 1ns/1ps

module D_Test;

Il Inputs
reg Enable, D;

// Output
wire Q;

/I Instantiate the Unit Under Test (UUT)
DLatch uut (

.Enable(Enable),

Q)

’

initial begin
$monitor("Time=%0t Enable=%b D=%b | Q=%b",
$time, Enable, D, Q);

/I Initial values
Enable = 0; D = 0; #10;

// Test 1: Latch disabled (Q should not change)
D =1; #10;
D =0; #10;

/I Test 2: Latch enabled (Q follows D)

Enable =1; D = 1; #10;

D =0; #10;

/l Test 3: Disable again (Q should hold last value)
Enable =0; D = 1; #10;

D =0; #10;

$finish;
end

endmodule

Lab Exercise
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Write down behavioral level description of D Flip Flop in Verilog and generate its Testbench
for verifying its operation. [5]

Now, using the same D_FF module, perform the conversion of D into JK Flip Flop using

instantiation. [5]
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Similarly, using the same D_FF module, perform the conversion of D into T Flip Flop using

instantiation. [5]

What is the role of always statement in the behavioral modeling? [2]
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Conclusion [3]




