Pandas.values property is utilized to get a numpy.array and afterward utilize the tolist() capacity to change that cluster over to list. DataFrame is the two-layered information structure. DataFrame comprises of lines and segments. Information is adjusted in the even configuration. Subsequently, we can utilize the DataFrame to store the information.
Records are additionally used to store information. Notwithstanding, the rundown is an assortment that is requested and inconsistent. Records need not forever be homogeneous.
import pandas as pd # Creating a dictionary to store data data = { 'Name' :[ 'Tony' , 'Steve' , 'Bruce' , 'Peter' ], 'Age' : [ 35 , 70 , 45 , 20 ] } # Creating DataFrame df = pd.DataFrame(data) # Print the dataframe df |
Output:
df.values.tolist() |
On occasion, you might have to change over your panda’s data frame to List. To achieve this errand, ‘ to list() ‘ capacity can be utilized. The following is an essential guide to utilize this capacity and convert the necessary DataFrame into a List.
Here, each internal rundown contains every one of the segments of a specific column.
Pandas DataFrame can be changed over into records in more than one way. We should examine various approaches to changing over a DataFrame individually.
Output:
[['Tony', 35], ['Steve', 70], ['Bruce', 45], ['Peter', 20]]
Method #1:
- Python3
import pandas as pd # Creating a dictionary to store data data = { 'Name' :[ 'Tony' , 'Steve' , 'Bruce' , 'Peter' ] , 'Age' : [ 35 , 70 , 45 , 20 ] } # Creating DataFrame df = pd.DataFrame(data) # Converting DataFrame to a list containing # all the rows of column 'Name' names = df[ 'Name' ].tolist() # Printing the converted list. print (names) |
Output:
['Tony', 'Steve', 'Bruce', 'Peter']
Method #2:
- Python3
import pandas as pd # Creating a dictionary to store data data = { 'Name' :[ 'Tony' , 'Steve' , 'Bruce' , 'Peter' ] , 'Age' : [ 35 , 70 , 45 , 20 ] } # Creating DataFrame df = pd.DataFrame(data) # Creating an empty list res = [] # Iterating through the columns of # dataframe for column in df.columns: # Storing the rows of a column # into a temporary list li = df[column].tolist() # appending the temporary list res.append(li) # Printing the final list print (res) |
Output:
[['Tony', 'Steve', 'Bruce', 'Peter'], [35, 70, 45, 20]]
Method #3:
- Python3
import pandas as pd # Creating a dictionary to store data data = { 'Name' :[ 'Tony' , 'Steve' , 'Bruce' , 'Peter' ] , 'Age' : [ 35 , 70 , 45 , 20 ] } # Creating DataFrame df = pd.DataFrame(data) # Converting dataframe to list li = df.values.tolist() # Printing list print (li) |
Output:
[['Tony', 35], ['Steve', 70], ['Bruce', 45], ['Peter', 20]]
Method #4:
- Python3
import pandas as pd # Creating a dictionary to store data data = { 'Name' :[ 'Tony' , 'Steve' , 'Bruce' , 'Peter' ] , 'Age' : [ 35 , 70 , 45 , 20 ] } # Creating DataFrame df = pd.DataFrame(data) # Converting dataframe to list li = [df.columns.values.tolist()] + df.values.tolist() # Printing list print (li) |
Output:
[[‘Name’, ‘Age’], [‘Tony’, 35], [‘Steve’, 70], [‘Bruce’, 45], [‘Peter’, 20]]
Also Read: How to Learn Programming?